NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

INTERPOLATION WEIGHTS OF
ALGEBRAIC MULTIGRID

by - |
Gerald N. Miranda, Jr.
June 1997

Thesis Advisor: Van Emden Henson
Second Reader: Christopher L. Frenzen

Approved for public release; Distribution is unlimited.

19980113 020

| DTIC QUALITY INSPECTED 3



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,

to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,

Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June, 1997 Master’s Thesis
4. TITLE AND SUBTITLE INTERPOLATION WEIGHTS OF 5. FUNDING NUMBERS

ALGEBRAIC MULTIGRID

6. AUTHORS MIRANDA, GERALD N, JR.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS({ES) 8. PERFORMING
ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT(mazimum 200 words)

Algebraic multigrid (AMG) is a numerical method used to solve particular algebraic systems, and interest

in it has risen because of its multigrid-like efficiency. Variations in methodology during the interpolation phase
result in differing convergence rates. We have found that regular interpolation weight definitions are inadequate
for solving certain discretized systems so an iterative approach to determine the weights will prove useful. This
iterative weight definition must balance the requirement of keeping the interpolatory set of points “small” in
order to reduce solver complexity while maintaining accurate interpolation to correctly represent the coarse-grid
function on the fine grid. Furthermore, the weight definition process must be efficient enough to reduce setup
phase costs.
We present systems involving matrices where this iterative method significantly outperforms regular AMG weight
definitions. Experimental results show that the iterative weight definition does not improve the convergence rate
over standard AMG when applied to M-matrices; however, the improvement becomes significant when solving
certain types of complicated, non-standard algebraic equations generated by irregular operators.

14. SUBJECT TERMS 15. NUMBER OF
Algebraic Multigrid, Matrix Equations, Interpolation Weights PAGES gg

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

i DTIC QUALITY INSPECTED 3







Approved for public release; distribution is unlimited

INTERPOLATION WEIGHTS OF
ALGEBRAIC MULTIGRID

Gerald N. Miranda, Jr.

Lieutenant, United States Navy
B.A., University of California, San Diego, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS
from the

NAVAL POSTGRADUATE SCHOOL
June 1997

NN Y,

Gerald N. eranda, Jr.

Approved by:

Van Emden/Henson, Thesis Advisor

O/w;k?)w L. Fwﬂgm

Christopher L. Frenzen, Second Reader

2o “Dray ) Doede

Max Woods, Chairman
Department of Mathematics

1ii




iv




ABSTRACT

Algebraic multigrid (AMG) is a numerical method used to solve particular
algebraic systems, and interest in it has risen because of its multigrid-like efficiency.
Variations in methodology during the interpolation phase result in differing conver-
gence rates. We have found that regular interpolation weight definitions are inade-
quate for solving certain discretized systems so an iterative approach to determine
the weights will prove useful. This iterative weight definition must balance the re-
quirement of keeping the interpolatory set of points “small” in order to reduce solver
complexity while maintaining accurate interpolation to correctly represent the coarse-
grid function on the fine grid. Furthermore, the weight definition process must be
efficient enough to reduce setup phase costs.

We present systems involving matrices where this iterative method signifi-
cantly outperforms regular AMG weight definitions. Experimental results show that
the iterative weight definition does not improve the convergence rate over standard
AMG when applied to M-matrices; however, the improvement becomes significant
when solving certain types of complicated, non-standard algebraic equations gener-

ated by irregular operators.
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I. INTRODUCTION

Precursors to multigrid (MG) methods were developed in the mid 1960’s by
Fedorenko (1964), and Bachvalov (1966), and remained fairly unknown until Achi
Brandt [Ref. 1] fully developed multigrid in his 1973 article. In that paper, he
demonstrated for the first time the utility of true multigrid methods as a fast numeri-
cal solvers for boundary value problems. An explosion of papers ensued and the 1980’s
produced a plethora of articles as well as efficient and reliable computer algorithms to
further demonstrate the practicality and usefulness of MG. Confidence in multigrid
grew when the true merits of this solver came to bear fruit in faster convergence rates
over conventional methods. Proofs of these faster convergence rates coupled with a
sufficient number of satisfactory numerical results gave way to a general acceptance
of the method even to the most sceptic [Ref. 2].

Originally developed to solve simple boundary value problems, multigrid meth-
ods gained wide recognition for their speed and efficiency in solving general linear

partial differential equations (PDEs) of the elliptic form, e.g., (in two dimensions)

—Vu(z,y) = f(z,y),

or explicitly as
—Ugg — Uyy = f(2,Y).

If this equation is now discretized, for example by finite differences, on some rectan-
gular domain, @ C R? as in Figure 1, and if we denote the boundary of the domain

as 0f), then multigrid will solve problems involving Laplace’s equation

(L1)

—Vu=0 in Q
u=0 on 0N ’
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Figure 1. Rectangular domain for discretization of a 2-D problem.

Poisson’s equation
~-Viu=8 in Q
u=0 on 0N

; (L2)

Helmholtz’s equation

—V2u+k2u=S in O

, (L3)
u=0 on 0N
or even the anisotropic Poisson equation
v u
——— T~ - in O
9t oy B , (1.4)
u=0 on 0N

in any number of dimensions almost effortlessly (comparatively speaking, of course).
These types of equations frequently arise in physical applications such as
steady state temperature problems, fluid flow, orbital mechanics (gravitational fields),
steady state electrical field problems, and many others. When a matrix equation arises
from the discretization of (I.1) through (I.4), multigrid methods are quite successful.
MG methods are fast iterative solvers using a hierarchy of levels, or grids, and

may be used with many types of discretization techniques such as finite difference




or finite element methods. In solving problems of the elliptic nature using these
discretization techniques, multigrid has proven to be the fastest numerical solution
technique in the field. Unlike other numerical solvers, multigrid is general enough so
that it can effectively use fairly arbitrary regions and boundary conditions and more
importantly, does not depend on the separability of the differential equations.

In fact, from presentations at the Copper Mountain Conference on Multigrid
Methods and from various papers which can be found on MG Net (:"http: //casper.cs.
yale.edu/mgnet/www/mgnet-papers.html# Y”), we know that mulfigrid can also be
directly applied to more complicated, non-symmetric and nonlinear systems of equa-
tions, like the Lame-System of elasticity or the Stokes (or Navier-Stokes) equations.
Multigrid has been applied successfully to electrostatic and magnetostatic problems
[Ref. 3], to statistical physics problems, to integral equations and to image recon-
struction algorithms [Ref. 4, 5]. It can also be applied to problems in control theory,
partical physics and permeable magnetic materials [Ref. 2].

The main concept of multigrid methods is “to complement the local exchange
of information in point-wise iterative methods (on each level) by a global one utilizing
several related systems, called course levels, with a smaller number of variables [Ref.
6].” The key to multigrid’s performance then is to apply a relaxation technique
as many times as needed to dampen the oscillatory modes of the error (since we
know relaxation works best on highly oscillatory modes) and then apply a coarse-grid

- correction scheme to eliminate the smooth components of the error. This combination
of relaxation and coarse-grid correction is the essence of why MG works so well.

Using multigrid methods, we can solve a large, difficult problem by reduc-
ing it iteratively into successive smaller, easier ones. At the coarsest level then the
system can be solved directly using a known, efficient direct method (such as the
LU-decomposition, Gaussian elimination, etc.). For systems such as (I.1) through
(I.4), very efficient methods are available. From A Multigrid Tutorial [Ref. 7], we
know that when applied to an N x N grid, multigrid methods are nearly optimal




since they only require O(N?log N) arithmetic operations and hence approach the
minimum operation count of O(N?) operations. In fact, it is shown in [Ref. 7] that
the full multigrid V-cycle (FMV) method which we will discuss in the next chapter,
requires only O(N?) to the level of discretization on the “model” problem (Laplace’s

equation (I.1)) of dimension d. This operation count is optimal.




I1. THE FUNDAMENTALS OF
MULTIGRID

There are two fundamental components of multigrid; one is the idea of coarse-
grid correction (CG) and the other is that of nested iteration (NI). Presented here is a
basic outline of both methods. To begin, we note that the principle concept of CG is
that it is a correction strategy that transfers the components of the problem between
the fine and coarse grids. Complementing coarse-grid correction is nested iteration
which is based on the following concept: use the information on the coarse grids to

provide an informed guess for the initial guess on the finer level.

A. THE PROBLEM STATEMENT
In order to understand the basics of multigrid and to motivate its usage, let
us apply the method to a simple one-dimensional problem. We begin by discretizing
a problem of the form
d?u(z)

— g + ou(z) = f(z), 0<z<l1, c>0 (IL.1)

with Dirichlet boundary conditions (u(z) = 0 on 02) by partitioning the domain, as
in Figure 2, into N + 1 points:

zj =jh, where j=0,...,N.

We make h = 1/N of constant width throughout the interval. This creates a grid

x=0 x=1
e o o & o e c(\/c & 5] Qb
Xo Xy X2 X; XN-1 AN

Figure 2. Discretized domain of problem II.1.

of N — 1 interior points. At each of these interior points, the equation in (II.1) is




replaced by a second order discretization, such as a finite difference approximation

_vj_1+2vj_vj+1+0'vj=fj, ].SJSN—l

h? (11.2)

Vo =N = 0
where we define f; = f(z;). The approximation (I1.2) of (IL.1) leads to a system
of linear equations. In compact form, it is written as Av = f, or in explicit matrix

notation, it is written

[ 2+ oh? -1 1 1 - F fi -
-1 24 0h? -1 Vg f2
515 _| .
-1 240R2 -1
i -1 240k || ovaa | | fyar |

where the matrix A is tridiagonal, symmetric, positive definite and has dimension
N —1x N —1. vis a column vector containing the approximate discretized solution

of u(z) and f; = f(z;) is the discretized right-hand side (RHS).

B. NOTATION

Before we continue with the outline it is instructive to define a few terms. Let
Q" denote the original grid or the domain on which the original problem is defined.
We call Q" the finest grid. The symbol, Q%" is defined to mean the nezt coarser grid
(usually of size N/2 — 1 but certainly not restricted to that). Similarly, v* will be
an approximation to the exact solution, u”, on Q*. This means that v?* represents
the approximate solution to u?* on the next coarser level Q2*. This notation will be
consistent for all such grids, Q**. The algebraic error, e*, on Q¥ (k = 2", n =
0,1,2,3,...) is given then by e** = u** — v** where k& = 1 represents the finest level.

When we translate the vectors only between two consecutive grids, we will use
the notation Q" to represent the finer of the two grids and O to denote the coarser

one. This makes it easier to follow the grid transfer sequence vice getting caught up




in exponential notation of the varying grids. Now that we have dispensed with some

of the notational formalities, let us move on to more of the important issues.

C. ITERATIVE METHODS

We introduce iterative methods here to illustrate the need for coarse-grid cor-
rection. First of all, iterative methods are needed and in fact, are required since the
use of direct methods can be impractical if the matrix A is large and sparse. The
sought-after factors of A using these direct methods can, and tend to, be very dense.
Even when the matrix is banded (but still sparse), algorithms that are ideal for fac-
toring such problems may be difficult to implement [Ref. 8]. Iterative methods by
contrast “generate a sequence of approximate solutions and essentially involve the
matrix A only in the context of matrix-vector multiplication [Ref. 8].” Iterative
methods are attractive and easy to use because of their simplicity in implementation
but may be prohibitively slow when the error is smooth.

What does it mean when we say, “when the error is smooth?” To answer this
and to understand the need for coarse-grid correction, we must first show the power
of iterative methods and then focus on their limitations. To avoid any confusion, we
note here that the phrase “iterative method” is isomorphic to “relaxation scheme”
or just simply, “relaxation.” We demonstrate relaxation with the weighted Jacobi
iteration since it is simple in nature and offers the same benefits as other iterative
methods; in addition, it shows the common defects of relaxation in general. Other
iterative methods include (regular) Jacobi, Gauss-Seidel, successive over-relaxation

(SOR) and Chebyshev semi-iterative; of course, there are many others.




1. The Weighted Jacobi Iteration on the “Model”
Problem

To begin, let us solve the following one-dimensional “model” problem which

is problem (IL.2) with o and f set to zero. The problem then becomes

—Uj—1 + 2u; — ujy; =0, 1<7;<N-1 (IL3)

UO=UN=O.

We solve (I1.3) by using the weighted Jacobi iteration. This iteration is computed

using
v](new) - (1 _w)v§01d) +wv;!‘, 1 S] <N-1
where
1 .
v =5 (v +of3 + %),  1<j<N-1

and w € R is a weighting factor chosen such that 0 < w < 1. In our use of the
weighted Jacobi iteration, we set w = 2/3. It turns out to be the optimal weighting
factor.

For the moment, let us assume that we have found an approximation, v #
0, to the discretized solution, u = 0, on our model problem. Since the system is
homogeneous and linear, we know the error, e, exactly, namely —v since e —u— v=
—v. In reality, the error will consist of many different frequencies but for simplicity,
let us assume that e consists of only three frequency modes: one high, one low and a
third mode in the middle. Our assumption using the three modes here is merely to

amplify the benefits of relaxation while simultaneously exploiting the inherent defects.

2. Frequency Modes of the Error

Consider an initial approximation to the solution consisting of the Fourier

. [7km
v; = sin (T)

where 0 < j < N and 1 <k < N — 1. The number k represents the wave number

modes

of the Fourier mode. The kth mode consists of k/2 full sine waves on the interval.




As we will see shortly, the wave number k (frequency mode) will play a major role
in the overall effect of relaxation. Figure 3 illustrates the modes v; = sin (-7%) with
wave-numbers k = 1, 6, 12 on a grid with N = 64. Wave number % = 1 represents

the lowest frequency while k = 63 is the highest one. We now iterate (or “relax”) on

0.8

0.6

0.4

!
<
N

T

1

o

o
T

Figure 3. Fourier modes v; = sin (-"%) with wave-numbers k = 1, 6, 12 on a grid

with N = 64. The kth mode consists of k/2 full sine waves on the interval. vy is
represented by the solid line, vs, the dashed and vy,, the dot-dashed.

problem (II.3) by applying the weighted Jacobi iteration with w = 2/3 on a grid of
size N = 64.

But wait! Maybe we are being a bit too hasty. Let’s step back from solving the
problem for a moment. Before we see what happens with our mixed-frequency initial
guess, it is instructive to first watch what happens to the individual components in
our initial guess. Figure 4 shows the application of the weighted Jacobi iteration

metho on problem (II.3) with v, v3, vs, and vy, as separate initial guesses.
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Figure 4. The weighted Jacobi iteration with w = 2/3 applied to the 1-D “model”
problem with N = 64 and with initial guesses v1, v3, vs, Vi2. ||€]|oo is plotted against
the iteration number for 50 iterations.

Notice that the error quickly decreases to zero within a few iterations for the
high- frequency mode (v;2) and although not quite as rapidly, the error also decreases
for the middle-frequency mode (vg) but it doesn’t quite go to zero. In extreme con-
trast, the low-frequency modes (v; and v3) appear to be relatively untouched by the
relaxation scheme. In fact, a prohibitively large number of iterations will still not
effectively reduce the error. It is the wonderful properfy of iterative methods which
allow for the quick elimination of high-frequency modes. On the other hand, they are
quite defective in decreasing the error when it consists solely of low-frequency modes.

We now return to problem (II.3) with our mixed-frequency initial guess. It is

17, (= . (637 . (12w
v; = 3 [sm (F) + sin (TV—) + sin (T)} .

of the form

10




Figure 5 shows how the error of a typical approximation vector decreases using re-
laxation alone. It is not uncommon that the error decreases rapidly, usually within
a few iterations. This is due to the quick elimination of the high—fréquency modes.
But after this initial rapid decrease, the error is reduced much more slowly. The
main culpritsare the low-frequency modes. “The important observation is that the
standard iterations converge very quickly as long as the error has high-frequency com-
ponents. However, the slower elimination of the low-frequency components degrade

the performance of the methods [Ref. 7].”
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Figure 5. The weighted Jacobi iteration with w = 2/3 applied to problem (II.8) with

N = 64 and with the initial guess v; = 3 [sin (%) + sin (%-55) + sin (1—2]\-,&)] . |lelleo 38

plotted against the iteration number for 50 iterations.

What we have seen is that iterative methods work very well for the first several
iterations but inevitably the convergence rate slows and the methods seem to stall.
This phenomenon is due to the fact that the rapid decrease in error in the early

stages of the method is from the swift, efficient elimination of the oscillatory modes
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(high-frequency components). However, once the high-frequency components have
been removed from the error, the iteration is less effective in reducing the remaining
smooth modes (low-frequency components).

This property of quickly removing the oscillatory modes but leaving the smooth
modes of the error is called the smoothing property. The smoothing property of
iterative methods (relaxation) is a serious limitation. How do we overcome this grave
obstacle? It is in the application of coarse-grid correction to the remaining “smooth

error” that we remedy this problem.

D. THE METHOD OF COARSE-GRID CORRECTION
In light of the limitations of iterative methods, we seek a post-relaxation
scheme. The purpose of the coarse-grid correction scheme (CG) is to eliminate the
low-frequency modes of the error once relaxation has become ineffective. The means
by which we do this is intergrid transfers. Intergrid transfers move vectors (and the
matrix) from the fine grid to the coarse grid and vice-versa by means of restriction
and interpolation operators. In “moving” to a coarser grid, we observe that the
smooth modes of the error become higher-frequency modes on this new grid. On the
coarse-grid now, the error has oscillatory components again; but we can effectively
remove those modes using relaxation. This two step methodology is the basis for CG.
To understand what it means to “move” a vector between grids, we introduce a few

required operators.

1. The Restriction Operator

Starting on the fine grid, 2, we move the problem A*v* = f* to the next
coarser grid, 27, by applying an intergrid transfer to A*, v* and f*. This operation
gives us the coarse-grid equivalent to that problem but on Q: AHvH = fH  In doing
this though, we must be careful to ensure that the coarse-grid problem “be consistent

with the differential problem in the same way as the fine-grid problem [Ref. 2].” The
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action of moving to the coarse-grid problem is performed by the restriction operator
IH. RN-1 , REL

IH is a linear operator from RV=! to Rz ! and has rank N/2—1 (see [Ref. 2, 7, 9] for
more on intergrid transfers). The most obvious of these types of restriction operators
is injection. Injection is a linear operator which produces the coarse-grid solution
approximation

v = I,{{vh

where

N
vff = v} for 1<j<5 -1

In words, injection gets the value of the coarse-grid vector directly from the associated
fine grid point. Figure 6 shows how the injection operator acts on a discretized sine
wave when moving the vector from Q" to Q.

Another type of restriction operator is full weighting. It is also a linear operator
from RN-! to R>~! with rank NV, /2 — 1. Like injection, it produces the coarse-grid
solution approximation

v = [Hyh
but in this case the transfer to the coarse grid is a bit different:
vfl = % (vgj_l +2v§j —}—vgﬂ_l) for 1<3< %—r-— 1.
In the case of the full weighting restriction operator, “the values of the coarse grid
vectors are a weighted average of values at neighboring fine grid points [Ref. 7].”
Figure 7 shows how the full weighting restriction operator acts upon a vector when

moving the vector from the fine grid to the coarse grid.
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Figure 6. Restriction by injection on a discretized sine wave from QF to QH. The
circles (o) on Q" directly become the coarse-grid points on QH .

2. The Interpolation Operator
Once on the coarse grid, 27, and after we complete our calculations there, we
need to be able to return to Q*. We introduce the tool that will assist us in this task:

the interpolation operator

b RTY — RN-1,

The interpolation operator is a linear operator from R> ! to R¥~1 and has full rank.

I}, moves the coarse-grid vectors up one level by the calculation

ot = }}vH

where

v| 2
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Figure 7. Restriction by full weighting on a arbitrary vector from Q* to QH. The
circles (o) on Q¥ are the coarse-grid points and are weighted averages of neighboring
fine grid point values.

The interpolation operator produces a vector on the fine grid that is a weighted
average of its adjacent points on the coarse grid. Figure 8 graphically depicts the
action of I} on a discretized cosine wave.

Now that we have our intergrid transfer operators defined, it makes sense to
talk about moving the matrix between levels. On QF, A*» = A. But what is A¥
and how do we get it? As a definition, we will call A¥ the Q¥ version of A" or, the

coarse-grid operator. We get A¥ from A* by the calculation

A" = THARTE (I1.4)
and we recover A* from A by the calculation

At = TR ARTE,
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Figure 8. Interpolation of a cosine wave from QF to Q*. The stars (x ) on QF are the
interpolated values from their adjacent coarse-grid points on Q.

This is how we move the operator A on all levels. The coarse-grid operator (IL.4) is
called the Galerkin condition. A second special and important relationship between

the full weighting restriction operator and the linear interpolation operator is
. .
Il =c (I,f’) where ¢ € R; (11.5)

that is, they are transposes of each other up to a (real) constant which turns out to
be essential. (I1.4) along with (IL.5) are called the variational properties.
We note here that there is a disadvantage in using a linear interpolation op-
erator. In fact, Wesseling explains:
Because of the arbitrariness in choosing the direction of the diagonals of the
interpolation triangles, there may be a loss of symmetry, that is, if the ex-
act solution of a problem has a certain symmetry, it may happen that the

numerical solution does not reproduce this symmetry exactly, but only with
truncation error accuracy. [Ref. 2]
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However, linear interpolation is much cheaper (and easier) to use than, for example,

bilinear or quadratic interpolation. So in our work, we only use linear interpolation.

3. The Algorithm of CG

To begin the coarse-grid correction algorithm, we perform a relaxation scheme
(e.g., Gauss-Seidel or Jacobi) on Q" on the original equation A*u* = f* with an

®. This has the effect of producing a much better guess

arbitrary initial guess v
since it removes the oscillatory components of the error right from the start. We
now compute the residual vector, r¥, on the coarser grid r¥ = I (f* — APv") and
then solve AFe® = rH for the algebraic error, e¥ on 9. Now that the error e¥ is
computed, we return to 0" by using the linear interpolation operator, I, defined
above. Since the error was smooth on Q| I% transfers that error very accurately
back to *. We now correct the fine grid approximation v* «— vP + T »eH by adding
the interpolated error e* (= I’eff) back into the initial guess. Since u* = v* + e,
we have improved our fine grid approximation to the solution and in theory, we have
found the solution. To improve it further, we perform relaxation on the original
equation A"u? = f* with the updated guess v” to obtain a final approximation to the

exact discretized solution u". The coarse-grid correction scheme (in compact form)

is printed below and is reproduced from Briggs’, A Multigrid Tutorial [Ref. 7).

P — CG(vh, fh)

Relax v; times on A*u* = f* on O with initial guess v".

Compute rf = [F(fh — Akoh).
Solve AHef = rH on QH,
Correct the fine grid approximation: v* «— v* + ke,

Relax v, times on A*u® = f* on Q" with (updated) initial guess v".

Here, 11 and v, are small positive integers, usually between one and three.
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E. THE MULTIGRID V-CYCLE SCHEME

The multigrid V-cycle scheme is a recursive algorithm that iteratively imbeds
the two level CG algorithm within itself. The physical property of this scheme (the
pattern it creates) is how it gets its name. Figure 9 shows a graphic illustration of

the V-cycle pattern.

Level h

Relax & Restrict Relax
2h Relax & Restrict Correct & Relax
4h Relax & Restrict Correct & Relax
8h Relax & Restrict Correct & Relax
16h Relax & Restrict Correct & Relax

32h Solve directly, Correct & Relax

Figure 9. The multigrid V-cycle.

We start one CG algorithm on the finest level and a new one on each successive
level all the way down to the coarsest level where we the problem is solved directly.
After we solve the problem on the coarsest level, we now complete each CG algorithm
at each successive level all the way back to the finest level. To clarify what the V-cycle
is really doing, we present the algorithm in a more structured format. In the code,
it is assumed again that there are Q) > 1 grids with the coarsest grid spacing given

by Lh, where L = 2971, This procedure is also a reproduction from Briggs’ tutorial

[Ref. 7].
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|
ot — V(" f*)

Relax on A*u* = f* 1 times with initial guess v*.

Compute f2* = [2hph,
Relax on A%*y?t = f?%  y; times with initial guess v?* = (.
Compute f4 = Iftr?,
Relax on A%y = f% p, times with initial guess v* = 0.

Compute f& = ISirth,
Solve ALhylh = fLk,

Correct v «— vt 4 [thoBh,
Relax on A**u** = f% p, times with initial guess v**.
Correct v?* «— v 4 [Zhyth,
Relax on A%*y? = f?h  y, times with initial guess v?".
Correct v* «— v* + Ik vk,

Relax on A*u* = f* u, times with initial guess v*.

For all its simplicity, this algorithm is the basic structure of the multigrid
methodology. It takes individual techniques and well known concepts (relaxation and
intergrid transfers) inherent with individual defects and integrates them in a cohesive
way, capitalizing on the benefits of each to produce an algorithm that is extremely
efficient and quite powerful.

Given the recursive nature of the V-cycle algorithm above, we now present it

in a more compact form.
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v e— V(" f*)

1. Relax v; times on APu = f* with a given initial guess v*.

2. If Q" = the coarsest grid, then goto 4.
Else f2* « IZh(fh — Atoh)
,02}1. — 0;
v Voh(ypth f2R).
3. Correct v* — v* + I} v,

4. Relax v, times on APu* = f* with initial guess v".

The V-cycle is just one of many multigrid cycling schemes. To see its effec-
tiveness, we show in Figure 10 how the V-cycle algorithm tailors itself to the problem
vice the size of the matrix involved. The number of V-cycles required to solve the
problem to truncation error barely grows even though we considerably increase the

matrix size.

12 T T T T T T T

V-~cycles required

o 1 1 1 1 1 ] 1 (-
500 1000 1500 2000 2500 3000 3500 4000
Matrix Size

Figure 10. Size of the problem verses number of V-cycles performed.
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F. THE STRATEGY OF NESTED ITERATION

When no information about the solution to the problem is known before-hand,
it is computationally wasteful to begin solving the problem on the finest grid with just
any initial random guess, v". If a poor choice is made, the speed of convergence may
be strongly affected. The algorithm may altogether fail to converge if constrained
by the number of iterations especially when the problem is nonlinear. Computing
the residuals on the “smaller” coarser grids is so much cheaper and it makes more
sense than to remain only on Q*. Therefore, it is better to use the information of
the coarse grids to provide an informed guess v* on the finest grid. In addition to
providing a better initial guess on Q*, nested iteration gives us a better choice for v**
at each level k [Ref. 2]. This idea of using information inherent in the problem from
the coarser grids to develop better initial guesses is the basis of nested iteration. In

compact form, the NI algorithm is
o" e NI(v*, %)
For k = 2,4,8,16,...,L
Compute f** = Igh ), f-1",
end
Relax v, times on Av = f on the coarsest level Q% and solve
AlhyLh — fLk for oLh
Interpolate v™* to obtain an initial guess for the Q(Z-1k problem.
Fork=L—1,...,8,421
Compute vk=1h = =Dk kh
Relax v, times on Av = f on Q¥ to obtain an initial guess for the Q(*-1)A
problem.

end.

In this algorithm, v; and v, are again small positive integers and there are Q > 1

grids with the coarsest grid spacing given by Lh, where I = 29-1,

21




G. THE FULL MULTIGRID V-CYCLE

In this section, we present a powerful algorithm that combines nested iteration
with the V-cycle. We also talk about how it works and why it is necessary. The
algorithm to which we are referring is called the full multigrid V-cycle (FMV) and -
it is the method which is computationally of optimal order. We already saw the
algorithms for NI and the V-cycle and reasoned for their need. Now we join them
into a single, efficient method.

In the FMV algorithm, the first approximation to the solution is obtained
by interpolation of the solution from the next coarser grid, which has already been
computed by another FMV algorithm. This is where NI plays its role. Once we
achieve a first approximation, we then apply the niultigrid V-cycle. “This combination
should suffice to give a fine-grid solution to the level of truncation error [Ref. 10].”

The FMV algorithm in compact form is (reproduced from [Ref. 7]):
v — FMV*(v*, f*)

1. If Q" = the coarsest grid, then goto step 3.
else
F o I — At
v?h — 0;
v?h — FMV?(p?h, fh),
2. Correct v* — v* 4 IE v?h

3. vh — VE(vR, f*) 1y times.

Figure 11 shows how the FMV scheme operates over five grids. Notice that
each V-cycle is proceeded by a smaller V-cycle which is designed to provide the best
initial guess for the following cycle. Shortly, we will see that the extra work required in
the preliminary V-cycle is not only of minimal cost, but it will generally pay for itself

over the course in solving the entire problem [Ref. 7]. We also note here that FMG
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cycles are less sensitive than the multigrid cycles but with one cycle per refinement,

we can still guarantee a solution to the level of truncation error [Ref. 10].

Qh

QZh

Q8h

QlGh

Q32h

Figure 11. The full multigrid V-cycle. The () signify work performed before CG
whereas (o) is the post coarse-grid correction work. The (+) on the ﬁrst branch
represent the restriction of f; no relazation is performed here.

Although the FMV algorithm costs more per cycle than the regular V-cycle,
it is also more effective. “The key observation in the FMV argument is that before
the Q" problem is even touched, the Q% problem has already been solved to the level
of truncation [Ref. 7].” The reason is that we now have a better initial guess for the
nezt finer grid from our use of nested iteration. In fact, we know that because of this
“extra” work during the preliminary cycling through the coarser grids, we only require
O(1) V-cycles by the time we finally reach the finest grid. So the computational cost
of the FMV method applied to a d-dimensional problem, as mentioned before, is

O(N?), which is optimal vice the cost of the V-cycle method alone which is of order
O(N¢log N).
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H. IS MULTIGRID ENOUGH?

The heart of multigrid intertwines relaxation methods such as Jacobi or Gauss-
Seidel with intergrid operators like coarse-grid correction. In consideration of a gen-
eral all-purpose elliptic equation solver, the two techniques enhance each other’s ef-
fectiveness such that the overall algorithm ~ multigrid — is more robust and powerful
than the sum of its parts. To be more specific, it is a known fact that relaxation
effectively smoothes highly oscillatory modes of the error but it is ineffective on the
smooth modes. This knowledge, coupled with the fact that any vector that lies in
the range of the interpolation operator also lies in the null space of the coarse-grid
correction operator, provides us a process that ensures that both the smooth and
oscillatory modes of the error are suitably damped.

Multigrid methods have their limitations, though. Suppose we wish to solve a
non-elliptically structured problem or even a regular elliptic problem but defined on
an irregular grid. How, for example, can we apply multigrid methods to these types
of systems. Will it even work at all? Can we tailor the irregularities in the meshes?
How do we apply MG to problems where no geometric structure (or grid) exists?
Some specialized multigrid codes have been written for specific, ill-structured prob-
lems to satisfy the irregular needs of the individual problem but that defeats the issue
of providing a solver that is more nearly a “black-box” type of solver. Every special-
ization restricts the scope of the discretization method with which the multigrid code
can be used [Ref. 11]. A significant effort may be necessary to prevent information
loss in the discretization and still, it may be prone to errors. It is very difficult “to
construct an efficient preconditioning method (which modifies the condition number
of the matrix A) for arbitrary ‘purely algebraic’ problems [Ref. 9].”

What we really want to do is to solve purely algebraic problems with the same
speed, efficiency and reliability that multigrid provides to geometrically structured
problems. We require a method that “should use only information in the matrix of

the system and as little extra information as possible [Ref. 11].” In other words,
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we want to extend all of the benefits of multigrid methods to a new type of solver,

algebraic multigrid.
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I11. ALGEBRAIC MULTIGRID

Algebraic multigrid (AMG) methods are a required extension of the multigrid
methodology. They were first introduced in the mid 1980’s by A. Brandt [Ref. 12], S.
McCormick and J. Ruge [Ref. 13] and further developed by J. Ruge and K. Stiiben
in their paper, Algebraic Multigrid [Ref. 14]. The methods arose from the need to
solve purely algebraic systems (matriz equations) of the form

Au=f or iaijuj =fi (i=1,...,n) (IIL.1)

=1

with the “multigrid-style” cycling process without any underlying geometry. Al-
though there is nothing special about the form in (IIL.1) as is, it is the form required
for our work in AMG. In their paper, Ruge and Stiiben show the usefulness of AMG
when applied to a “model class” of matrices - symmetric M-matrices. (Recall that
the matrix A is an M-matrix if a;; > 0 and a;; < 0 for ¢ # j.) They also relaxed
the assumption to weak diagonal dominance (|ai| > ¥7_; ;4 lai;|, 1 =1,...,n) and
showed uniform two-level convergence for that case as well. In addition, they imply
that AMG may be attractive as a “black box” solver for algebraically posed elliptic

problems as well as for certain other types of operators that generate matrices with

similar characteristics.

Moreover, for particular types of matrix equations, algebraic multigrid is a
robust and efficient matrix equation solver. It is designed to solve these types of
matrix equations (IIL.1) using the same principles of standard multigrid methods,
without requiring the need of an underlying geometry of the continuous problem.
Application of AMG to many problems involving systems that generate symmetric
M-matrices is already shown to be efficient. We discuss below some other types of

problems to which AMG can successfully be applied.

27




A. WHY ALGEBRAIC MULTIGRID?

AMG, like multigrid, uses the same multi-scale hierarchy to solve the problem
Au = f. At each level during the solution process, the system is “solved” and the
error corrected until the process terminates at the lowest level (when no more levels
are required) and then the system is solved by using one of a host of direct methods
such as Gaussian elimination. Thus far, there seems to be little difference, but shortly,
we will see that there is.

It is a solution method that is ideal for solving more general large, sparse
algebraic equations because, unlike MG, it is not dependent on particular domains
or operators. Although AMG can solve standard elliptic problems on uniform rect-
angular grids, for such problems, it is a less efficient solver than highly specialized
geometric multigrid solvers. However, once the setup phase (discussed in the next
section) is completed, AMG is quite competitive. But when geometric grids become
impossible to design and MG cannot be tailored to fit the problem, this is when AMG
should be used. It has been shown in various papers such as [Ref. 13, 14, 15] to have
favorable results for these more complicated domains.

Even though originally designed to solve large, sparse matrix equations that
involved M-matrices, application of AMG to other types of not-so-sparse matrices has
increased in recent times. This is primarily due to current problems of interest which
are on unstructured grids and are extremely large, usually on the order of millions of
equations and unknowns. In fact, in some particular cases, algebraic multigrid has
been proven to be the fastest method available. One problem, for example, is the
transistor placement problem in integrated circuit design. This particular problem
concentrates on layout optimization and solves a system that determines the optimal
location for hundreds of thousands of cells, which consist of hundreds of transistors,
on the chip surface. Regler and Riide show that AMG is a competitive alternative to

current methods in layout optimization.
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B. APPLICATIONS OF AMG

Algebraic multigrid methods are useful when it comes to solving certain sys-
tems that either contain no geometric structure or that produce irregular grids tailored
to complex domains or operators. When the application of standard multigrid meth-
ods proves to be impossible or entails a high degree of difficulty on certain problems,
algebraic multigrid may be a better choice. These types of problems are described in
more detail in [Ref. 14] but here, they are summarized. In general, AMG should be
considered over geometric multigrid

(1) when the problem involves complex domains so that any discretization we
choose is still too fine to serve as the coarsest grid. In this case, the work required
in geometric multigrid to determine the interpolation schemes would be prohibitive.
AMG is clearly the choice here since the coarsening process is automatic. In fact, for
this case, AMG performs quite favorably in terms of operation count and CPU time
[Ref. 15].

(2) when uniform coarsening is not allowed at all on the finest grid. This
happens, for example, when a finite element discretization is applied using irregular
triangulations. Since AMG requires no geometric structure (i.e., no uniform grids),
it is ideal.

(3) when the interpolation operator is chosen so that it becomes very difficult to
find a relaxation process that complements the operator in smoothing the error enough
to allow a decent coarse grid correction. Sometimes, it is impossible to determine a
relaxation process at all. AMG is not affected here since interpolation is defined by
the entries in the matrix, and the weights are chosen tot reflect the relative strength
of each connection.

(4) when a problem is entirely discrete, especially if the problem contains no
geometric structure at all. Since AMG does not depend on an underlying continuous
problem, it is clearly the method of choice. This applies to problems where we are

only given the system matrix A and the right-hand side vector f.

29




C. THE STEPS OF AMG

Algebraic multigrid methods are designed with regular (geometric) multigrid
methods in mind, in that they use the principles of multigrid but do not require nor
rely on the geometry of the particular problem being solved. Instead, they explicitly
use information from the matrix of the system, i.e., the coefficients of the unknowns.
Application of AMG to the problem Au = f requires a two-part process. There is
an initial step which defines the intergrid transfer and coarse-grid operators and, in
addition, chooses the coarse grid itself. This first step of the process is called the
setup phase and most of the work involved in writing the algorithm takes place in
this portion of AMG. “The generality of AMG must be paid for by a setup phase
that may take 80% or more of the overall time [Ref. 15]”. The second part of the
AMG process is called the solution phase. In this part, regular multigrid cycling is

performed on the components of the matrix until a predetermined tolerance is met.

1. The Setup Phase
As defined in [Ref. 14], a brief outline of the algorithm used in the setup phase
on the problem Au = f is provided below:

1. Set m = 1.

2. Choose the coarse grid ™*! and define I, ,, the interpolation operator.
3. Set Ip*t' = (I7,,)T and A™*H = [mHigm]m

4. When Q™*1 is small enough, set ¢ = m + 1 and stop. Otherwise, let

m = m + 1 and return to step 2.

Here, we define ¢ to be the number that represents the coarsest grid. This number is
used in the theoretical bound on the asymptotic (V-cycle) convergence factor, p. In
practice though, p is ¢-independent and by increasing the accuracy of interpolation
for smooth errors, we find that AMG is quite an efficient method. Therefore, the large

investment in writing the setup phase may save time (and cost) in the setup work for
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later problems that use the same, or nearly the same, matrix. This effectively reduces

the time required for the solution of follow-on problems.

2. The Solution Phase

The solution phase is part of the algorithm in which regular multigrid cycling
takes place. It involves a relaxation process to remove the oscillatory modes of the
error and an intergrid transfer operators to move the problem to different levels. This
phase of AMG, when the operators and relaxation are chosen properly, is a very

efficient solver for the problem on the finest grid [Ref. 14].

D. DEFINING THE “GRID”

One of the main ideas of algebraic multigrid is to split the set of variables
on a particular level into two disjoint subsets. The first set contains coarse level
variables (C-variables) and the second is the complementary set of fine level variables
(F-variables). The fact that we require the sets to be disjoint will be important as we
will see shortly. If we now define h and H to be any two consecutive levels with & as
the fine one then we can set C* = {j | j € C} and F* = {j | j € F}. Furthermore,
let i € Q% = C* U F* be defined as a point in a fictitious plane. In this sense, i
is nothing more than a reference to the variable u?. Now, for example, A*u* = b*
can be interpreted as a grid equation on a fictitious grid Q*. Furthermore, we define
Q" = F* and Qf = CH. The detail in defining the grid can be quite cumbersome

and it is not our intention here to reproduce what can be found in [Ref. 14].

E. CONNECTIONS AND CONVERGENCE

Next we introduce a new term called connections. Connections refer to the
relationship between grid points in the sense of a directed graph which is associated
with any matrix. On any level , a point ¢ € Q" is defined to be (directly) connected
to a point j € Q" if a;; # 0. Furthermore, we define the (direct) neighborhood of a
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point : € Q* by
Ni={jeQl|j+#3, ak  0}. (111.2)

Let us now concern ourselves with interpolation along direct connections. In
this case, we consider only the interpolation points C; with C; € N; N C and the

corresponding weights
Wi = 14 'afkl, (Z EF ke Cz) (IH.3)

with
) (II1.4)

0<m<1/ > ’af-‘,
1eC;

In order to maintain two-level convergence, it is sufficient to require for every i €
F, keC;

0<alwy <p lafk

, 0<ak(l—s)<BY al (IIL5)
J

where s; < 1, which is ensured by (III.4). From (IIL.5), we can easily derive more
practical conditions to effectively develop an automatic coarsening algorithm that has
B as an input parameter. The algorithm will also choose interpolation with weights
(I11.3) satisfying (II1.5).

In order to understand the effect of 8 in (IIL5), we state the following result
presented in [Ref. 14].

Theorem: Let 8 > 1 be fixed. Assume for any symmetric, weakly diagonally
dominant M-matrix A* the C-points are picked such that, for each i € F,
there is a non-empty set C; C N; N C with

B ak > ak | (IIL.6)
J¢C;

and define the interpolation weights (II1.3) by 7: = 1/ T ¢, a’. Then two-level
convergence is satisfied.

For a given 8, condition (IIL.6) is satisfied by many choices of the sets C

and C; but regardless of how we chose those sets, we always want them as small as
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possible. This condition requires that we make each F-point i strongly connected to
its interpolation points. In other words, we actually want each |a;;| (j € C;) to be

comparable in size to the largest of the |a;x| (k € N;) or equivalently,
lasj| ~ 7%%’5'“%! foryeCiand 0 <y < 1.

The assumption in (IIL.6) gets weaker as B gets larger; but, for large 3, (I1I1.6)
allows for rapid coarsening. The price of this though is slower two-level convergence
speed. Although, when 8 = 1, we achieve the best convergence but the expense of
the method becomes extreme. Ruge and Stiiben explain that the best compromise
is when B = 2. This is when about 50% of the total strength of connections of every

F-point will be represented on the coarser level.
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IV. CONSTRUCTING THE
INTERPOLATION OPERATOR

The choosing of an interpolation operator is “dictated by the desire to achieve
good theoretical estimates of the convergence of the iterations as well as by bounds
on the computational complexity of the algorithm [Ref. 11].” It is of the essence
in defining the interpolation operator that the range of interpolation approximates
those errors not effectively reduced by relaxation. To make it successful then, AMG

must be constructed in such a way to ensure that this automatically happens.

A. ALGEBRAIC SMOOTHNESS

For the problem Au = f, let us define a smoothing process

Wy = G+ I™ = G (A™)
where G is a (linear) smoothing operator such that G™ : R*™ — R"". In AMG, an
error e is said to be smooth if ||Gel|; = ||e||,. In other words, the error is smooth when
it is slow to converge with respect to the smoothing operator. If we now assume that
¢ is a smooth error then the residual r = Ae is small compared to e. This occurs in
most of the common relaxation processes. Knowing this, we expect |r;| < a;; |e;| for
all 7 and so for (algebraically) smooth error we have Ae ~ 0. A good approximation
for each e; can then be obtained from
Ae=a;e;+ Y aije; =0
JEN;
or

€; = -:l Z a;5€;5 (IVl)

a.. !
® JEN;
where the neighborhood N; of point 7 is defined in (II1.2).
With this fact, it is easy to construct an interpolation operator which guaran-

tees that the smooth error lies in the range of interpolation. One standard operator

might be
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- el forte C=0QF
Ie =
(H )i > wigef forie F =0k
keCch

with wi; = 6 if ¢ € C*. Recall that

0 fori+#k
1 for:==%k.

Oir =

However, this basic “model” interpolation operator isn’t very effective since it
is not usually “local” enough. Here we define “local” to be w;z = 0 for all i € F*
unless k € C!, where C* C C*. For reasons of efficiency, we require that C* be
some small set of interpolation points. When working with symmetric M-matrices,
[Ref. 14] shows for the case when ¥, |a:;| = a;; that smooth error generally varies
slowly in the direction of strong connections. This fact will be important later on
when constructing weight definitions w;; for the interpolation operator along those

connections.

B. INTERPOLATION ALONG DIRECT CONNECTIONS

Let us consider only those interpolation points C; such that C; C N; N C.

The interpolation weights then have the form wy = 7; ,a?kl forz € F and k € C;

where 0 < 7; < (ZZeC; 'afll) _1. We require this definition to ensure that w; < 1.

Let us take a look at the case when the matrix A is strictly an M-matrix (with no

assumption on symmetry), i.e., a;; > 0 and a;; < 0 for i # j. If we set C; = N;, then
(IV.1) gives

ei= ) lﬁij—!ej. (IV.2)

jEN; @i

Now we choose w;; = afkl /ai;. However, this would imply that C = Q but we want
Ci to be small; so generally, we desire the set D; = N; — C; # (. What we want to do
is to “distribute” the non-interpolatory connections a;; (j € D;) to the interpolatory

point a;;.

36



S

If |a;;| is small, then adding a;;, for j € D;, to the diagonal element a;; should
not hurt accuracy very much since the contribution from a;; is negligible. If, however,
|ai;| is large, then we know this replacement is reasonable since smooth error generally
varies slowly in the direction of strong connections. To determine the error in this

case, we begin with (IV.1).

a;;e; = — z a;;€;

JEN;
= =D aiei— D aije
JEC; JED;
set e;Re;
~ - 2 a;je; — Z a;;€;
JEC: JED;
then
(%‘ + > %‘) e = D aije
JED; JEC;
or =
—— a-;e-
U -
"Tas+ Y ag
J€D;
2 laijle;
=& (1v.3)
aii + 3 aij
JED;

Since A is assumed to be an M-matrix, the denominator in (IV.3) is positive. We

now have a good representation of the error.

C. THE ITERATIVE WEIGHT DEFINITION

Let us now consider the entries in an arbitrary matrix A. Figure 12 shows a
graphical relationship between various points in the matrix. We will use this illus-
tration in our derivation of the weights. Recall our earlier assumption that Ae ~ 0
when e is smooth. Then, for a smooth error and for a point 7 € F, we have

Gei = — )  ajper — Y Gije; — > a;e; (IV.4)

keC; JEF IEN;, IC, 1¢C;
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le N;

me N,
me C
me Cj

k;e C

ke G
k e G

Figure 12. Relationship of fine grid to coarse grid points in the matriz. Points ¢ and
J are the fine grid points; the others are coarse grid points, both weak and strongly
connected, interpolatory and non-interpolatory.

and similarly for a point 7 € F, we have
ajje; = — Y Gjrer — > Gji€; — > A jmCm.- (IV.5)
keC; i€F m€N;, meC, mgC;
To make the interpolation operator “small,” we must distribute the non-interpolatory
connections (a;; for § ¢ C;) to the interpolatory points. In basic terms, we need to
approximate e; (j € F)and ¢ (I € N;, 1 € C, 1 ¢ C;) in terms of e; (k € C;).
Likewise,we need to approximate e; (¢ € F) and e,, (m € N;, m € C, m ¢ C;) in
terms of e;, (k € C;).
Let us assume that the interpolation weights have been determined for the
interpolatory points k¥ € Cj. That is, the interpolatory weights to define e; for

J € F are known. Then e; could be approximated by a weighted average (for use in
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approximating e;):
oo Wik €k T+ Wik, Eky

] ~
Wik, + Wik,
so in general
2 Wikek
2
k€C;
Wik
keC;

Then for ¢ € F, we substitute e; in (IV.6) into e; in (IV.4). This leads to

keC; JEF leN;, 1eC, I¢C;

Y Wikek
aiie; = — Y Giey — > a; L% PR g > a;ey, (Iv.mn
kz Wik

while for j € F, we replace e; in (IV.5) by the equivalent approximation for e; in

(IV.6). This gives us

k% Wikek
€C;
ajie; = — ), ajker — Y aji > wn | T > @jmem. (IV.8)
- keC; ieF kEC, ik meN;, meC, m¢C;
7

If we look at the two previous equations closely, we see that (IV.7) is being
used to define w;; which are used in (IV.8) and (IV.8) is being used to define w;;
which are used in (IV.7). Thus, the interpolation weights at point i are dependent
on the interpolation weights at point j, and vice-versa. Hence, we have an implicit
system to define the interpolatory weights. This implicit system governs how the
weights are computed and is the basis for the iterative weight definition (IWD) of
AMG.

D. INTERPOLATION CONSTRUCTION USING THE
ITERATIVE WEIGHT DEFINITION

This section presents an algorithm for coding the iterative weight definition of
algebraic multigrid. We begin by starting at a fine grid point, say point 7, and dividing
its neighborhood, Nj;, into four distinct groups. Figure 13 represents an illustration
of a typical neighborhood of an arbitrary point :. It also shows the elements in each

of the groups to which we will refer in this discussion of construction.
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We begin the algorithm by dividing the entries of the matrix into four groups.

For each point ¢, divide /V; into four groups:

le N;
le C
le C

ne C
ng C

Figure 13. [llustration of the neighborhood (N;) of a fine grid point i and its relation-
ship to other fine and coarse-grid points in the matriz. For each point i, N; is divided
into four distinct groups.

Group A Coarse-grid interpolatory points, C;. In Figure 13, these corres-
pond to points k;, k; and ka.

Group B Coarse-grid and fine-grid non-interpolatory points that are weak-
ly connected to point 7. In Figure 13, these are points m and .

Group C Fine-grid points strongly connected to point z. In Figure 13, this
is point j. |

Group D Coarse-grid points not weakly connected to point 7 but not in

C;. In Figure 13, this is point n.

40



1. Initialization

Step 1: Initialize the variables (vectors):

Forallz € F do

set
Ci=85nC
set
wip = Gik
' Y. ai
1eC;
define

Qi = {] |a,-j is small }

end

Here, we note that S5; is the set of points strongly connected to point ¢ and (; is the

set of points weakly connected to 3.

2. Calculation
Step 2: Calculate the interpolatory weights, w;x, by using the approximation
Ae =~ 0:
For each : € F do

a;;e;, ~

- Z A;LCE (IVQ)

keC;

- Z a e} (IV].O)
leQ;

- Z a;i€; (IV.ll)
JEF, j¢Q;

- Z Qin€n (IV.12)

n€C, n¢Ci, ng;
approximate the errors:

for group B points, distribute the quantity in (IV.10) to the
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diagonal by the approximation

€]~ €. (IV13)

for group C points, approximate

k% W;ikek

2.

C R —— IV.14

K Y Wik ( )
keC;

but distribute the quantity in (IV.11) to the diagonal only
when w; > 0.

for group D points, approximate

kz“c air€k
en R e IV.15
> Gk ( )

keCi
but distribute quantity in (IV.12) to the diagonal only when
a;; is of the right sign. '

. Either stop here, or
For each ¢z € F do

set
C; = {j[w,-j > 0}

goto Step 2.

We give some insight to the iterative nature of this last step. The routine ends
when there are no more fine-grid points or the set of interpolatory coarse-grid points,
C;, is empty. If this is not the case, we check the next fine-grid point 7 and refine the
set C; to include only those weights that are of the correct (positive) sign. If all the
weights are now of the correct sign, then we end, if not we refine C; again and repeat

the loop until we meet an end of loop criteria.
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E. INTERPRETATION OF THE ALGORITHM
In this section, we interpret the code of Section D. But before we begin, we

make a few simplifications. Define the sets

= {klk € Ci}

= {l|l e Q)

{jli € F,j ¢ Q:}

= {nlneCn¢ Ciyn¢ O}

D Q W
I

Now, the equation involving (IV.9)-(IV.12) becomes,

a;e; = — (E aer + ) aqer+ Y age;+ Y ainen) . (IV.16)
A B c D

In the code, the sum over the set B becomes after substitution of (IV.13) into (IV.10)

Z a;€;, (IV17) .
B

the sum over the set C becomes after substitution of (IV.14) into (IV.11) assuming

wi > 0

%:'wikek
Zaij W , (IV].S)

and the sum over the set D becomes after substitution of (IV.15) into (IV.12) assum-
ing a;; is of the right sign

Z ( § aikek)
b kgé'i i

After interchanging sums in (IV.18), we get

2 aij
> ;w_k Wik €k (IV.20)
A K3

keC;

43




and after switching the sums in (IV.19), we get

(7797
4 keC;

With (IV.17), (IV.20) and (IV.21), (IV.16) becomes

Zain
> ( ; ) a;xe. (Iv.21)

Z aij Z Qin
a;e; + Zazlez ~ — Za'zkek + Z wiker + Z Z Qik€k| ,
keC,

kGC’.

or equivalently

a; + azl e — Gk + Wik + Qi | €k- IvV.22
A g: kg_éi aix

We now rewrite (IV.22) as

— |@ik + o | Wik + o | Gik
v2, tk ¥55, tk
r €.
A (aii +> az’l)
B

\ J

The term in the braces is w;x. So our formal definition of the iterative weight definition

> aij > ain
—a — [<] old D a;
= | S | vl — | Eag |
new k

_ kEC; €C;
Wiy =

(aii + 129: ail)

is
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V. NUMERICAL RESULTS

In this chapter we present some numerical results on problems involving dis-
cretized partial differential equations as well as non-geometrically generated matrix
equations using algebraic multigrid methods. As will be seen shortly, AMG methods
using the iterative weight definition (IWD) may not be robust but are more efficient
on certain problems than standard AMG weight definitions.

Before we begin with the results, a few definitions are in order. We define a

strong connection as
a;;| = ymaxia; for 5 € C
i ”' keN; I Zkl J ¢

where 7 is a parameter that varies: 0 < 4 < 1. The choice we use in our experiments
to define a strong connection is v = 0.25 which has been experimentally shown to
yield good results. Most problems presented use this choice of 7; however, for some
problems we test with 4y = 0.5 because, in certain cases, favorable results have been
found (and is another avenue of research). For those problems, it will be specifically
stated what « is. For reference purposes, (1,1) V-cycles with Gauss-Seidel relaxation
and C/F-ordering of points were used in all tests. The convergence factor (p) was

computed by

where n equals the number of cycles performed, Ry is the final residual and R; is the

initial residual. The following notation will also be used throughout this chapter:

04 Operator complexity
o  Grid complexity
p  the asymptotic convergence factor of the 20t V-cycle

where o4 is the ratio of the total number of nonzero entries in all the matrices to that

of the number of nonzero entries in the fine-grid matrix and ¢% is the ratio of the
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total number of points on all grids to that of the number of points on the fine-grid.
o# and 0% are other measures that describe the performance of AMG. After the first
few experiments we use j instead of p since the 20®* V-cycle is more representative

of the true convergence rate.

A. ISOTROPIC PROBLEMS

We wish to establish some baseline behaviors of each method in the absence
of any irregularities. We discretize the Laplace operator (VZ) on tﬁé uﬁit square with
Dirichlet boundary conditions using several different finite difference discretizations.
For each problem, we use a uniform grid with mesh size h = 1 /64. If welet N =1/h
then we create a square matrix of size N2 x N? (or 4096 x 4096 for our problems).

The stencils we use are as follows:

1 T 4
(1) %[1 4 -1}, 2) -21?{ 1 ]

1 1 1
N S ! N I
@) =1 8 -1, (4 4 2 4|,
8% 1 1 4 1 0021 1 4 4

These stencils arise naturally from the discretization of

—Viu(z,y) = f(z,y) in Q

(V.2)
u=0 on ON.
To get stencil (1), for example, we replace the derivatives of
— Uzz — Uy = f(z,Y) (V.3)

by second order finite differences. If we let h, = 1/N and h, = 1/M, where N and

M are positive integers then

1

T
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1
Uy N oy (w51 — 2usj + uijy1) - (V.5)
Yy

Substituting (V.4) and (V.5) back into (V.3) and with the definition f;; = f(z:,y;),
then (V.2) becomes

C Y1 = 2 A Uiy Uigo1 — 2+ Uiy £l
= f.
B2 B ! (V.6)
Uij = Uo,j = UN,; = Uio = Uiy =0
where 1 <:< N—-land1<j<M-1.
In terms of a stencil then, we get

[ -1 1

-1 2 2 -1

Yy

V2= (V.7)

by

If we now let A = h; = hy, then (V.7) becomes

which is exactly what we were trying to show. The other stencils can be similarly
derived.

Table I compares the results of the iterative weight definition against standard
AMG weights on Laplace’s equation (I.1) using the stencils above. In all tests the ini-
tial guess for u(z,y) was randomly generated. On Laplace’s equation using standard
stencils discretized using finite differences, we note that there is little, if any, differ-
ence in p of the iterative method over the standard definition. As expected though,

AMG produces excellent results on these model problems using either method.
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Table I. Convergence rates in solving Laplace’s equation using different isotropic op-
erators discretized using the finite difference method.

‘Standard weights Iterative weights
Complexity Complexity
Stencil p o4 o' p o o'

1 0.05037 | 2.3714 | 1.7009 | 0.05037 | 2.3726 | 1.6990
2 0.07903 | 2.2475 | 1.6799 | 0.07903 | 2.2588 | 1.6797
3 0.08409 | 1.4162 | 1.3464 | 0.08109 | 1.4172 | 1.3440
4 0.06541 | 3.7120 | 1.9963 | 0.07938 | 3.9734 | 2.0522

B. THE ANISOTROPIC PROBLEM USING THE FI-
NITE DIFFERENCE METHOD

Now that we have some baseline results of both methods in the absence of any

irregularities, we wish to try a new problem,

—EUgy —Uyy =0 in

A (V.8)
u=0 on ON

where the operator, —euz,; — uy,, is the anisotropic Laplacian. Results in this section
are given for various levels of anisotropy (¢) and again we use second order finite
differences to discretize the problem. This section will demonstrate the ability of
AMG to tailor the coarsening algorithm to the individual problem. Other results can
be found in [Ref. 9]. The domain in the following problem is again the unit square
with Dirichlet boundary conditions. The problem is discretized on a uniform grid

with A = 1/64, using the 5-point stencil
=S| —€ 242 —¢ |- (vV.9)
We will now apply both weight methods to problem (V.8) with f(z,y) = 0.

The motivation behind this test is to have knowledge of the error. With the error
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known exactly, it is easier to compare the true performance of both methods. As

before, the problem is discretized on a uniform grid with & = 1/64, using the 5-point

stencil in (V.9) above. This generates a 4096 x 4096 matrix. The convergence rate in
Table II is that of the 20th iteration (p) vice the average defined in (V.1). In Table
I, we see that the iterative weight definition produces a better convergence rate over
standard AMG weight methods for all values of ¢ in the anisotropic problem but these
improvements are utterly insignificant since they are so small. In addition, IWD does
not always produce better results in terms of solver complexity or grid complexity.
Clearly the standard weight definition is the better in this case since the increased

cost associated with IWD makes it unfavorable when the results are practically the

same.

Table I1. The anisotropic problem of the Laplacian operator discretized using the finite
difference method.

Standard weights Iterative weights
Complexity Complexity
c o . po; 0 P p

0.0010 | 0.04549 | 2.6319 | 1.9644 | 0.03944 | 2.6299 | 1.9609
0.0100 | 0.06731 | 2.7707 | 1.9590 | 0.06698 | 2.7707 | 1.9590
0.1000 | 0.05674 | 3.3067 | 1.8655 | 0.05672 | 1.3103 | 1.8655
0.5000 | 0.06349 | 2.4027 | 1.7068 | 0.06085 | 2.3272 | 1.6926
1.0000 | 0.05721 | 2.3714 | 1.7010 | 0.05037 | 2.3727 | 1.6990
2.0000 | 0.06951 | 2.4271 | 1.7129 | 0.05206 | 2.3338 | 1.6956
10.000 | 0.05576 | 3.5391 | 1.9033 | 0.05575 | 3.5691 | 1.9070
100.00 | 0.06753 | 2.8047 | 1.9658 | 0.06720 | 2.8043 | 1.9653
1000.0 | 0.04544 | 2.6319 | 1.9644 | 0.03946 | 2.6299 | 1.9609

Again, one can see in Table II that the differences, if any, between the methods are
minimal. For these simple problems presented thus far, we see little benefit in using
the iterative weight definition. In fact, if we consider the cost associated with TWD,
we conclude that the method is worse since the standard weight method is a less

expensive routine.
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C. THE ANISOTROPIC PROBLEM USING THE FI-
NITE ELEMENT METHOD

We present results in this section using the discretized Laplacian operator.
Whereas Sections A and B involved discretizations using the finite difference method,
we apply the finite element method to see if there are any improvements.

Table III provides results generated by elongating the discretized grid for
Laplacian operator in the z-direction. We also compare the convergence rates of
both methods as we change the definition of strong connection from v = 0.25 to
7 = 0.5. In the table, dz = edy means that for every point in the y-direction (dy),
there corresponds ¢ more points in the z-direction (dz). The intention of this test
is to see how well the iterative method tailors to semi-coarsening to improve the

convergence rate.

Table III. The anisotropic problem with zero RHS discretized using the finite element
method.

standard weight iterative weight

size (N X N) |de=edy |[y=025[y=05]v=025[]y=05

matrix | grid € p '

400 | 20 25 0.14 0.14 0.14 0.14
900 30 10 0.45 0.23 0.13 0.13
900 | 30 100 0.83 0.53 0.82 0.23
1225 | 35 50 0.25 0.14 0.15 0.14
10000 | 100 10 0.47 0.24 0.14 0.14
10000 | 100 100 | 0.93 0.55 0.93 0.28

From inspection of Table III, it is clear that for certain problems, the iterative
weight definition is significantly better. In some cases, IWD is better by over % and
the extra cost associated with using this method has more than paid for itself with the
large reduction in convergence rate. The natural questions then are why is it better
on some and not on the others? What are the special properties of the problems in

which IWD outperforms the standard weight definition? Does semi-coarsening play
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a role? Before we can answer these questions, we look at some other problems with

domains that are much more complicated.

D. PROBLEMS WITH COMPLEX DOMAINS

In this section, we present some results for some complicated domain problems

using the standard Laplacian operator

0 0
=027 T o2
As in Sections C, we use the finite element method to discretize the problem. Figures
14, 15 16, 17, 18 and 19 are graphic illustrations (meshes) of the problems we inves-
tigate. The size of each problem varies and is noted in the following tables. Table
IV shows the results of some initial experiments on these more complicated domains.
Much like the problems we have already seen, we expect that little will be gained by
using the iterative weight definition since on standard Laplacian operators, regular

AMG already works great.
1. The Meshes

Figure 14. Mesh 1.
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Figure 15. Mesh 2.
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Figure 16. Mesh 3.
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Figure 17. Mesh 4.
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Figure 18. Mesh 5.
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Figure 19. Mesh 6.
2. Results of Complex Domain Problems

Table IV. Convergence rates of problems high in complezity using the standard Lapla-
cian operator discretized using the finite element method.

Standard weights Iterative weights
Complexity Complexity
Mesh | Size p a4 ot p a4 o'

1 961 | 0.8717 | 2.1990 | 1.7184 | 0.8496 | 2.1998 | 1.7184
513 1 0.0896 | 2.1250 | 1.6530 | 0.0902 | 2.1118 | 1.6472
321 | 0.0766 | 3.1268 | 1.9595 | 0.0746 | 3.0207 | 1.9315
757 | 0.1386 | 2.9944 | 1.9511 | 0.1779 | 2.9780 | 1.9406

1256 | 0.1460 | 3.3765 | 1.9936 | 0.1460 | 3.3000 | 1.9745

1080 | 0.1501 | 2.3064 | 1.7630 | 0.1399 | 2.3541 | 1.7769

O O | |

With these results, we suppose that with simple operators such as the standard
Laplacian or even the slightly skewed Laplacian the iterative weight definition will
not perform better than regular AMG methods. This is largely due to the fact that
conventional MG works extremely well on standard (elliptic) operators. We must test
our new method using a more irregular type of operator to see if IWD will fare better

than standard weight definitions.
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E. COMPLEX DOMAINS AND OPERATORS

Laplacian operators have not seemed to produce results in favor of the iterative
method so we hypothesize that IWD may outperform the standard weight definition
method when the operator is more complex. To get a better idea of what types of
operators or on what types of problems the iterative weight definition improves j,
we develop a more complex operator and reevaluate some of the same problems as in
Section D.

Specifically, we experiment with those geometries as illustrated in Figures 14,
15, 17, and 16. The size of each problem here also varies and may be different from
those presented in Table IV. The sizes of each problem are included in the tables.
For problems in this section, we use the irregular operator

0 0

0
— Tty ] —+te z+y ,
b=e tle y)a2 dc " By’

922
Table V provides results of both methods using the definition of strong con-
nection 4 = 0.25 whereas Table VI uses v = 0.5 as the definition.

Table V. Convergence rates of complex problems using an irregular operator discretized
using the finite element method with v = 0.25.

Standard weights Iterative weights
Complexity Complexity
Mesh | Size p o4 ot p o o'

1 561 | 0.1367 | 2.3281 | 1.7558 | 0.1432 | 2.3891 | 1.7825
513 1 0.0984 | 2.3862 | 1.9415 | 0.1279 | 2.3543 | 1.9376
1249 | 0.5912 | 3.6256 | 2.0200 | 0.2877 | 3.6133 | 2.0168
2889 | 0.7949 | 3.4115 | 2.0048 | 0.8880 | 3.2519 | 1.9740

ot

Tables V and VI and reveals something interesting. The iterative weight defi-
nition significantly improves the convergence rate over the standard weight definition
by approximately -;-, but only in one case. What is special about that case? Clearly,

it is not this irregular operator alone nor the specific problem but a combination of
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Table VI. Convergence rates of complez problems using an irregular operator dis-
cretized using the finite element method with v = 0.5.

Standard weights Iterative weights

Complexity Complexity

Problem | Size p o o p o4 o
1 561 | 0.2700 | 2.7205 | 1.9287 | 0.1194 | 2.7501 | 1.9305

2 513 | 0.1106 | 2.4271 | 1.9552 | 0.2863 | 2.4334 | 1.9591
3 1249 1 0.7573 | 3.0000 | 1.9976 | 0.4668 | 3.0286 | 2.0120
4 2889 | 0.9013 [ 2.9619 | 2.0142 | 0.9400 | 2.9612 | 2.0059

both that holds the answers to our quest for classification. Moreover, in thé other
three problems, IWD performs worse.

Let us now investigate the case (mesh 3) where IWD works the best to see if
there are any clues to its usage. Figure 20 shows not only the sparsity pattern of the

matrix generated but more to the point, the locations of the entries in the matrix.

0
2001
4001 .

‘i‘. "‘“‘ “\_ A
800} ™ e
1000k, © \ R N
‘ \"\ ey .\;":\‘ .

1200 i . . ) g, "&;‘;‘. -

0 200 400 600 800 1000 1200

Figure 20. The sparsity pattern of mesh 3.

Figure 21 shows where the positive and negative entries are. Together, these
figures reveal that mesh 3 is not a M-matrix and so we have a non-M-matrix case where

the iterative weight definition should be used over regular AMG weight definitions.
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Figure 21. Location of positive and negative entries of mesh 3.

Table VII shows the difference between the iterative weight definition and the

standard weight method over a sequence of refinements on that particular problem

(mesh 3). In all cases, we see a major improvement in convergence rate.

Table VII. Convergence rates‘of the problem in Figure 16 using an irregular operator
discretized using the finite element method. Different refinements to the mesh are

presented.
Standard weights Iterative weights

Complexity Complexity

Refine | Size p o4 o p o ot
1 85 |0.3967 | 2.6373 | 1.9176 | 0.3411 | 2.7199 | 1.9412
2 321 | 0.4368 | 3.3284 | 2.0125 | 0.2684 | 3.4382 | 2.0467
3 1249 | 0.5912 | 3.6256 | 2.0200 | 0.2877 | 3.6133 | 2.0168
4 4929 | 0.7351 | 3.7220 | 2.0016 | 0.3582 | 3.6430 | 1.9846

problem (mesh 5) shown in Figure 18.
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Table VIIL. Convergence rates of the problem in Figure 18 using an irregular operator
discretized using the finite element method. Different refinements to the mesh are

presented.

Standard weights Iterative weights
Complexity Complexity
Refine | Size p o o p o4 ot

0 330 | 1.0000 | 2.9523 | 1.9940 | 0.9906 | 2.9927 | 2.0121
1 1256 | 0.9888 | 3.3843 | 2.0677 | 0.9881 | 3.2193 | 2.0239
2 4896 | 0.8459 | 3.6010 | 2.0666 | 0.8418 | 3.4574 | 2.0345

In this case, both methods have seemed to fail all together. We conclude here that
the operator alone isn’t the cause for the improvements seen in Table VII in using

IWD. It must be a combination of both the geometry and the operator.

F. CONCLUDING REMARKS

The accuracy and efficiency of AMG in solving systems involving symmetric
M-matrices has been shown in many papers. The use of AMG for solving other types
of matrix equations is a topic of extensive research and variations in computational
methodology during the interpolation phase have resulted in differing convergence
rates. We have found that regular AMG interpolation weight definitions are inade-
quate for solving certain discretized systems that do not lead to M-matrices. For these
types of problems, an iterative approach to determining the interpolatory weights was
useful.

In applying the iterative interpolatory weight definition of AMG, we have care-
fully balanced the requirement of keeping the interpolatory set of points “small” in
order to reduce solver complexity while at the same time, maintaining accurate inter-
polation to correctly represent the coarse-grid function on the fine grid. In addition,
the extra work involved in using IWD does not significantly add to setup phase costs.

Experimental results have shown that the iterative weight definition does not

significantly improve the convergence rate over standard AMG when applied to M-
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matrices, which we anticipated. However, the improvement becomes significant when
solving certain types of complicated, non-standard algebraic equations although it is
unclear at this stage of development what details are required to cause the iterative
weight definition to outperform the regular weight definitions.

We have seen that IWD is not robust; however, there are specific problems on
which IWD should be used. When using a standard operator such as the Laplacian,
regular AMG should be used since its performance is superb and it is less expensive
to use than the iterative weight definition we presented here. However, when the
operator becomes irregular and the domain more complex, IWD has been shown to
dramatically improve the convergence rate over current AMG weight definitions and

should be considered a viable option in the future.
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VI. FUTURE RESEARCH

Although we have shown that the iterative weight definition (IWD) of AMG
isn’t robust, we have found certain problems where it has improved the convergence
rate significantly. We are currently searching for more data that will enable us to
classify the types of problems on which IWD works best. There are still many avenues
of research and IWD is just one such direction. Algebraic multigrid research is open
to a plethora of new and interesting ideas. The need for more efficient and robust
solvers is never-ending and is the driving force that brought about AMG in the first
place. To discuss all the new possibilities of improved AMG would be a paper in
itself; therefore, we restrict our attention to that of just a few new methods on the

forefront of improved interpolation.

A. INTERPOLATION USING EIGENVECTORS

One method that can improve interpolation is based on the idea of eigenvec-
tor approximation and was originally presented in 1985 by Ruge and Stiiben in [Ref.
14]. Approximation using eigenvectors is a method used to modify interpolation and
the coarse grid matrices on all levels. The basis of the idea is that the eigenvectors
corresponding to the smallest eigenvalues are, in general, the algebraically smoothest
functions and so must be better approximated by the range of interpolation. Unfor-
tunately, the eigenvector approach requires the computation of the smallest eigenval-
ues and their corresponding (approximate) eigenvectors. However, there are efficient
methods for finding them and so it may not be as computationally expensive as one
would think. Computational accuracy in determining them is rarely needed since
linear interpolation (under the assumption that smooth functions are locally linear)
“usually ensures accurate enough interpolation of the needed eigenvectors when stan-

dard interpolation does not [Ref. 14].”
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To make the method efficient, we must integrate the computation of the eigen-
vector with the updating of the interpolation. Before the coarse-grid correction can be
applied on each level, we must update the interpolation and the coarse-grid operator
with the current eigenvector approximation. This must happen before the operation
can continue to the next coarser grid. Ruge and Stiiben note that this can be done
efficiently and that several eigenvector approximations can be calculated simultane-
ously, if required. The concept of the eigenvector approximation is a tool used only
for the improvement of interpolation, after which we use AMG in the standard way

to solve the problem.

B. THE LEAST-SQUARES IDEA

Tom Manteuffel (University of Colorado at Boulder) and Van Henson (Naval
Postgraduate School) recently introduced a new method that incorpbrates a least
squares solution on the local level. Initial trials have produced quite favorable results.
The idea behind this new method involves an singular value decomposition (SVD) of

the matrix on a local level. Presented here is a brief outline of how it works.

1. Let ¢ be a fine point. Define N; to be the set of points that includes the
fine point 2 and those points p connected to point i. Furthermore, define the set NN,
to include the set N; and all the points ¢ connected those points in N; and continue
this process (e.g., N3, Ny, ...) until there are no points remaining.

2. Now select from the matrix A the rows corresponding to N;. Remove all
columns that contain only zeros. This removal of zero-columns yields a n x m matrix
which we call S. For example, if we start with a nine-point stencil on regular grid,
then we end up with a 9 x 25 matrix, S.

3. Compute S = UXV, the singular-value decomposition of S. At least the
last m —n (or 16, using our nine-point stencil) columns of V are null-space vectors of

S. Let X be the m x (m — n) matrix (e.g., 25 X 16) comprising these m — n columns
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of V.

4. Let T be the m x m matrix whose rows correspond to the same points as
do the columns of S. In the example of the nine-point stencil, T is of size 25 x 25. T
is the matrix associated with solving the homogeneous Dirichlet problem on N,.

5. We now reorthogonalize the columns of X to be T-orthogonal, using a

Gram-Schmidt process with respect to the T-inner product

j=1
uj=gz;— 3 (Tzj,w)wr forj=1,2,...,m—n,

k=1

where
s
wj = ———-——fJ-—-—,
(T, uj)

and define W be the m x (m — n) matrix whose columns are w, wy, w3, ..., Wn_p.

6. Select I, a set of k£ points to be the interpolatory points from which the
value at 7 is to be interpolated. Normally (but not always) the points in I are chosen
from among the C-points connected to 7. Permute the rows of W so that the first &
rows contain the values of the reorthogonalized singular vectors corresponding to the
points in I. The (k+1)* row contains the values of the singular vectors corresponding
to the point i.

7. Perform k Householder reflections from the right to bring the matrix (e.g.,
25 x 16) W into the form:

x 0 0 | « row for interpolation point

* x 0 0 | « row for interpolation point

* *x x 0 0 | « row for interpolation point

* ok ok ok x % * «— row coressponding to point 7
- * Tt * -

This reflection does not alter the span of the columns, since the Householder reflection

is a unitary operation.
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8. Now determine a linear combination of the first k¥ rows that gives the first

k entries in the (k + 1)* row. The weights of that linear combination are the desired

interpolation weights.

Note that the size of the entries in the (k 4 1)** row beyond the k** column
give a “residual” measure of how well the process works. If all the entries are “small”
then the weights do a good job approximating the singular vectors at point ¢. If some
of them are “large” then we may need to add another interpolation point to the set
or, the set of equations selected in step 2 should be expanded to be those in N, vice
those in M.

Initial experiments with this method have produced excellent results on several
standard problems. On certain problems requiring semi-coarsening v(i.e., different
coarse-grid spacings in different coordinate directions), this is the only method known
to produce the “correct” interpolation weights. However, the method is extremely
expensive, requiring small SVD calculations at every fine-grid point. Achieving the

robustness of this approach at lower cost is a major focus of ongoing research.

C. THE COMPOSITE GRID FORMULATION

Steve McCormick (University of Colorado at Boulder) has presented some ini-
tial work on improving interpolation by approximating “globally smooth” components
in the neighborhood of the interpolation region. His idea is to use composite grids to
“solve” the local problem on the coarse grids. What he recommends is to have the
target point ¢ and all its neighbors on the local fine grid, twice removed neighbors on
the next coarser and more global grid, and so on, then use the current AMG coars-
ening to solve the local problem which could in fact just be the least-squares scheme
described in Section B. In the following discussion, L is the n x n matrix AMG is

given to “invert” and I is the ¢ X ¢ identity matrix.
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Let us assume that a point ¢ is to be interpolated from g C neighbors. Define a
composite grid consisting of the fine-grid in the interpolation region and progressively
coarser grids as we move away from the target point ;. We now use AMG on the
composite grid with the current coarsening to compute an n x ¢ matrix Q with the

following property:

@ minimizes p(QTLQ)
subject to

(PQTPQ =1

where p(A) denotes the spectral radius of A. Note that the g x ¢ matrix PQ denotes
the restriction of @) to the ¢ interpolatory C points.

The motivation here is to find the vectors that lie in the near null space of L
that are very distinct on the C points. Included in the space determined by @ (i.e.,
its span) is the “eigenvector” p of L belonging to the smallest eigenvalue where the
local normalization, (Pp)T Pp = 1, is used.

This scheme is reasonably cheap except that the usual coarse grids would
introduce O(log n) complexity. McCormick notes that all of the coarse grids may not
be needed for the interpolatory region and is hopeful that we’ll need just a few very
coarse ones. In this manner, we can get the interpolation we want in a fairly general
setting.

If we simplify this local problem by interpreting the columns of Q to be vectors
truly defined on the fine-grid then it should be fairly easy to implement. With only
one target point, it’s easy to see. Then, @ is an n vector. If we now partition @ into
its components u, belonging to the C points, and v belonging to all other points, then
the constraint (PQ)T PQ = I just becomes pTp = 1.

If we partition L corresponding to the u-v partition, we have

A B
BT C
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and it’s can be seen that the local problem is just the eigenvalue problem:

minimize RQ(u)

where
uT Du
RQ() =
and
D=A-BC'BT.
Note that this determines u, and then v can be computed by v = —C~1BTu. Now,

when we want more targets, we just solve for more eigenvectors of D. In fact, we
want all ¢ eigenvectors of the ¢ x ¢ matrix D. Once these eigenvectors are known, a
least-squares procedure could be used to select interpolation weights, similar to the
manner described in Section B. Preliminary experiments with the method outlined
in this section have yielded some favorable indications, but there is much yet to be
aécomplished before the efficacy of the approach can be demonstrated.

The three avenues of research outlined here are all active areas of effort. All
are focused on the principle that accurate interpolation of “local” null-space and
near null-space vectors will ensure accurate approximation of the global equivalents.
Moreover, an increase in accuracy of interpolation for smooth errors results in a more
robust and efficient V-cycle convergence making algebraic multigrid a competitive
alternative to current methods. In fact, in some cases, there is no better matrix
solver. Even though this research is in its infancy, indications now point toward
eventual success in using these new ideas to produce a robust, accurate, and efficient

interpolation.
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GLOSSARY

algebraic multigrid a numerical method used to solve particular algebraic (linear)
systems with the “multigrid-style” cycling process

boundary conditions a condition imposed on a bounding surface (in three dimen-
sions) or line (in two dimensions) or at a bounding point (in one dimension)
coarse-grid operator A™*! = [tiA™[™

connections a point : € Q" is connected (directly) to a point j € Q* if afj # 0
diagonal dominance (strict) |a;|> X7 ;a5  i=1,...,n

diagonal dominance (weak) |a;| > X7, i laij] i=1,...,n

Dirichlet boundary conditions u = 0 on the boundary

injection one type of a linear restriction operator

iterative methods a.k.a relaxation

Fourier modes v; =sin(jkr/N) where k is the wave number

Galerkin condition A™ = ["+1A™[™ known as the coarse-grid operator
interpolation operator I, :R"™+ — R™

Laplace’s equation VZu=0

M-matrix a matrix which is positive definite and whose off-diagonal components
are nonpositive

Poisson’s equation V?u =S5, S#0

restriction operator 7t :R"m — Rrmt:

smoothing operator G :R"™ — R", G acts on e to remove the oscillatory modes
of the error

smoothing property the property of an iterative method that quickly removes
the oscillatory modes but leaves the smooth (or low-frequency) modes of the error
strongly connected a point : is strongly connected to a point j if [a;;| & max|a|
for j € C; and k € N;

variational properties I7+! = (I7,,)7 and A™*! = [mH1Am]™
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wave number the kth mode consists of k£/2 full sine waves on the interval (0, V)
C-variables coarse level variables

F-variables fine level variables
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